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Abstract— This paper considers the problem of online op-
timal trajectory design under time-varying environments. Of
particular interest is the design of energy-efficient trajectories
under strong and uncertain disturbances in ocean environments
and time-varying goal location. We formulate the problem
within the constrained online convex optimization formalism,
and a modified online gradient descent algorithm is motivated.
The mobility constraints are met using a carefully chosen step-
size, and the proposed algorithm is shown to incur sublinear
regret. Different from the state-of-the-art algorithms that entail
planning and re-planning the full trajectory using forecast
data at each time instant, the proposed algorithm is entirely
online and relies mostly on the current ocean velocity measure-
ments at the vehicle locations. The trade-off between excess
delay incurred in reaching the goal and the overall energy
consumption is examined via numerical tests carried out on
real data obtained from the regional ocean modelling system.
As compared to the state-of-the-art algorithms, the proposed
algorithm is not only energy-efficient but also several orders of
magnitude computationally efficient.

I. INTRODUCTION

Trajectory design for motion planning is one of the core
building blocks of autonomous systems. The foremost goal
here is to design optimal trajectories starting and ending
at specified locations while satisfying application-oriented
constraints such as (i) avoiding clutter and other obstacles
[1]; (ii) maintaining connectivity [2]; (iii) adhering vehicle-
specific constraints such as turn radii or spatial envelop
of the vehicle [3]; and (iv) energy efficiency [4]. Energy
efficiency is critical in naval and aerial environments where
the vehicle may simply drift along the surrounding air/water
flow. Designing trajectories that are energy efficient is im-
portant, for instance, in oceanic environments vehicles with
constrained energy budget are often deployed for long-term
autonomous missions [5] such as surveying, mine hunting,
chasing seaborne targets, oceanographic research etc.

Minimum energy trajectory design can generally be for-
mulated as a convex optimization problem with intermedi-
ate waypoint locations as variables. The objective function
encourages lower energy consumption while the constraints
may impose physical restrictions arising from maximum
sustainable velocity, smoothness requirements, etc., [4]. In
practice, a maximum time of arrival is also specified to rule
out highly energy efficient trajectories that may take the
vehicle too far from the straight line path. Indeed, a trade-off
exists between the energy consumption and the excess delay
incurred in reaching the goal [6], [7]. This work considers
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the problem of designing energy optimal trajectories for a
given excess delay.

Classical optimal trajectory design approaches require
information of ocean currents between the start and the
goal locations [8]. However, unless the trajectories are short,
such information is only available in the form of low-
resolution historical data or forecasts. For instance, approx-
imate forecasts available from Regional Ocean Modeling
System (ROMS) [9] or Navy Coastal Ocean Model [10]
provide ocean current velocities at points separated in the
order of kilometers. Further, since the forecasts are obtained
from satellite or field observations, they are available either
at very coarse resolutions or only for specific geographical
regions. Owing to the uncertainty in the ocean currents
forecasts, offline trajectory design of autonomous vehicles
is both challenging and potentially dangerous due to the
possibility of being swept into shipping lanes or land [11]. To
counter these challenges, state-of-the-art approaches rely on
a re-planning framework using the forecast disturbances with
predictions from Gaussian process (GP) regression added
to it [4]. It is remarked that although such algorithms are
capable of handling time-varying environments and a moving
goal, the reliance on forecasts and heavy computational costs
make them impractical for many systems.

This work puts forth an online algorithm for utility-optimal
trajectory design in unknown and time-varying environments.
Following the spirit of online convex optimization, the pro-
posed algorithm generates the subsequent waypoint locations
in an online fashion and without relying on forecasts. The
proposed online gradient descent (OGD) algorithm builds
upon the utility-optimal trajectory design framework in the
context of communication networks and incorporates infor-
mation about the excess delay budget within the design.
Since each update step only uses the information at the
current time instant, both the ocean current velocities as
well as the goal locations are allowed to be time-varying.
Unlike the sampling-based algorithms used in [12] and [4]
whose outputs are random, the proposed algorithm does not
include any random parameters and always produces the
same trajectory for a given system. Finally, the trade-off
between the total energy consumption and excess delay is
empirically evaluated using ocean currents data collected
from [9].

In summary, the main contributions of the current work
include (a) development and analysis of the OGD algorithm
for generic time-varying utility optimal trajectory design
problems, yielding a sublinear regret; (b) formulation of
the online trajectory design problem for a watercraft or an



unmanned surface vehicles (USV) operating under strong
disturbances; and (c) demonstration of the low complexity
and superior performance of the proposed algorithm as
compared to the significantly more sophisticated state-of-the-
art algorithms using real-world ocean current data.

The rest of the paper is organized as follows. Sec. II briefly
reviews some related literature. In Sec. III we detail the
general trajectory planning problem formulation besides as-
sumptions and conditions under which desired regret bounds
hold. Sec. IV details the energy efficient trajectory planning
problem formulation and solution methodology. Experimen-
tal evaluations are carried out to validate the performance of
the proposed method, and the results are discussed in Sec.
V. Finally, Sec. VI concludes the paper.

II. RELATED WORK

Here we present a comparison of our work with existing
literature as per the following criteria:

A. Ocean trajectory design approaches

The work done on trajectory planning in the ocean envi-
ronments can be divided into graph-search based approaches
which use variants of the A? algorithm, sampling based, and
optimization techniques.

Graph-based search methods are designed to leverage
the coarse resolution of data available [13]–[16]. However,
traditional approaches suffer from two general problems:
(i) the quality and complexity of the solution is controlled
by the chosen level of discretization and (ii) the predicted
trajectories often result in increased control costs because of
the need to make sharp turns.

Sampling-based methods represent the trajectory as a
sample from a Gaussian process [17], or sample a set of
noisy trajectories about the initialized trajectory [12], [4].
Of these, [4] also samples in time, thereby providing addi-
tional flexibility in the design of trajectories. An exploration
parameter is often required to control the variance of the
sampled trajectories and a higher exploration parameter often
leads to better but possibly more skewed trajectories. On
the flip side, such sampling-based algorithms are highly
sensitive and output a different trajectory for every run of
the algorithm. Approaches such as [4] and [12] also require
dense sampling rendering them slow in the presence of
multiple constraints. Overall, the per-iteration run-time of
sampling-based algorithms is at least O(KN3) where K is the
number of samples and N is the total number of waypoints.
In contrast the proposed algorithm has only a single tuning
parameter, no random components, and the time complexity
of O(N).

Optimization methods approach the trajectory design
problem more directly. Offline approaches include methods
utilizing parallel swarm search [7], level-set expansion meth-
ods [18], [19], and gradient-based approaches [20]. These ap-
proaches rely on forecast data and cannot be readily adapted
to online and time-varying settings. Online approaches to
trajectory design include the sequential convex optimization
framework in [21] and covariant gradient descent algorithm

[22]. However, existing online approaches require static
settings and very little analysis exists for the time-varying
setting at hand.

Of these, most works provide time-optimal trajectory
designs [7], [18]–[20]. In contrast, the final trajectory of the
sampling-based algorithms such as [4] may be different every
time depending on the initialization, sampled trajectories and
ocean current velocities. Finally, two separate optimization
problems, one for minimizing the travel time, and another for
minimizing the energy, are posed in [16]. Although [16] is
demonstrated under time-invariant flow fields, it can be easily
extended to time-varying scenarios. However, extensions to
time-varying flow fields limit the accuracy of the flow model
used to predict future temporal variations. In contrast, the
current work does not require such models and designs
trajectories in an online fashion.

B. Environmental dynamics

Environmental dynamics considered here are limited to
ocean currents. Papers such as [20] discuss planning in
an estuarine environment in which the currents can be bi-
directional, larger in magnitude than the vehicle’s maximum
velocity, and also temporally vary at the same location.
Strong temporally varying currents are also discussed in
[15] and [7]. While designing trajectories is significantly
more challenging in such environments, none of the existing
algorithms is capable of running in an online fashion.

To the best of our knowledge, the present work provides
the first online utility-optimal trajectory design algorithm
for application in time-varying oceanic environments and
moving goal scenarios. The proposed OGD algorithm builds
upon [2], where the OGD algorithm was first applied to the
trajectory design problem. Different from [2], the present
work provides a more generic variant of the OGD algorithm
by considering time-varying coupling constraints in the opti-
mization problem and its application to planning in oceanic
environments.

III. GENERAL TRAJECTORY OPTIMIZATION PROBLEM

This section formulates the general utility-optimal online
trajectory learning problem and puts forth an online gradient
descent (OGD) algorithm for the same. Considering a generic
utility function and path constraints, we begin with formulat-
ing a constrained optimization problem that would serve as
a benchmark for the proposed algorithm. Subsequently, the
OGD formalism is used to develop the online algorithm with
a sublinear offline regret. The algorithm and the formulation
in this section build upon the trajectory design problem
considered in [2] in the context of communication networks.
The present formulation considers more general time-varying
constraints and is therefore applicable to a broader variety
of trajectory design problems.

The trajectory learning problem is expressed as that of
finding the optimal agent locations x(t) ∈ R2 at each t ∈
N subject to various restrictions. In the literature, these
locations are also referred to as waypoints that the agent must
traverse and the trajectory is simply the collection {x(t)}t≥1.



At time t = 1, the current location of the agent x(1) = s, as
well as the goal location d(1) are given. The agent learns
the trajectory in an online fashion while the goal location
d(t) continues to vary with t. Let TETA denote the expected
time of arrival (ETA) for the agent when it follows the
straight line path between x(1) and d(1) calculated either
using forecast data or the prevailing environmental conditions
at time t = 1. However, due to the dynamic nature of the
problem, at time t = TETA, (a) the agent need not be at d(0)
if it follows the straight line path; and (b) the goal location
would have already changed to d(TETA). Besides, a budget of
δ excess time slots is available and may be used to traverse
a more energy-optimal trajectory. To this end, the general
utility-optimal trajectory design problem may be formulated
as follows

{x?(t)}T
t=1 = argmax

{x(t)}Tt=1

T

∑
t=1

Ut(x(t)) (1a)

s. t. gt(x(t),x(t +1))≤ 0 1≤ t ≤ T −1 (1b)
x(1) = s (1c)
x(t) ∈ X 1≤ t ≤ T (1d)

where T = TETA + δ with δ representing excess time slots,
X ⊂R2 is a non-empty closed and convex set that represents
the functional space in which the agent moves, Ut :X →R is
a time-varying concave utility function, and gt :X ×X →R
represents the convex coupling constraint between successive
way-points. Note that we denote the cost function ft :=
−Ut so as to express (1) as a more standard minimization
problem. Further, both ft and gt may depend on other
physical parameters of the agent/environment such as the
goal location d(t), maximum agent speed vmax (measured
in meters per time-slot), velocity of the ocean currents
etc. Here, x?(1) = s is the starting point and is therefore
not an optimization variable in (1). While the subsequent
analysis will require that the goal trajectory {d(t)}T

t=1 and the
functions ft and gt to be slowly time-varying, their temporal
variations are otherwise arbitrary and possibly adversarial.

Problem (1) may be solved in an offline fashion using any
existing convex optimization algorithm. In practice, however,
an online solution is desirable since the state of the environ-
ment at time t (encoded in the functions ft and gt ) is revealed
after the action at time t is taken. The setting is reminiscent
of the online convex optimization (OCO) framework which
however does not include temporally coupled constraints
(1b). Towards solving (1) in an online manner using online
gradient descent (OGD) algorithm that takes the following
form for t ≥ 1

x̂(t +1) = x̂(t)− 1
γt

∇ ft(x̂(t)), (2)

where γt is the step-size and the algorithm is initialized
with x̂(1) = s. Although OGD has been widely applied to
unconstrained OCO problems, its performance for tempo-
rally constrained problems has not been well-studied. A
special case of (1) was considered in [2] for the case when
gt(x,x′) = ‖x−x′‖−vmax for some vmax ∈R++. The current

work considers a more general setting with arbitrary convex
coupling function gt .

We begin by stating some regularity conditions for the
problem (1) that are necessary to develop meaningful guar-
antees.

(A1) Strong convexity: the function ft is µ-convex, i.e.,
ft(x)− µ

2 ‖x‖
2 is convex.

(A2) Lipschitz continuous gradient: the function ft is L-
smooth, i.e., ‖∇ ft(x)−∇ ft(x′)‖ ≤ L‖x−x′‖ for all x,
x′ ∈ X .

(A3) Bounded gradients: the objective function gradients are
bounded, i.e., ‖∇ ft(x)‖ ≤ G for all x ∈ X .

(A4) Feasibility: the OGD iterates x̂(t) adhere to (1b)-(1d).
Observe here that while Assumptions (A1)-(A3) are standard,
Assumption (A4) is specific to the problem at hand. In
general, it is required that Assumption (A4) be explicitly
checked. In the present case, we choose the step size γt to
ensure that (A4) continues to hold; see Sec. IV.

These set of assumptions enable us to characterize the
performance of the OGD algorithm through the notion of
regret, which compares the cost incurred by the proposed
algorithm against that incurred by an adversary that has
complete information about future changes and solves the
problem in an offline manner. Here we use the following
definition of regret that is motivated from the offline regret
introduced in [23],

RegT :=

[
T

∑
t=2

ft(x̂(t))

]
︸ ︷︷ ︸

online

−

[
T

∑
t=2

ft(x?(t))

]
︸ ︷︷ ︸

offline

. (3)

The regret bound in (3) is calculated in terms of the squared
path length of the adversary, defined as

ST :=
T−1

∑
t=1
‖x?(t +1)−x?(t)‖2 , (4)

and squared cumulative gradient variation as

GT :=
T−1

∑
t=1

max
x∈X
‖∇ ft+1(x)−∇ ft(x)‖2

2 . (5)

Intuitively, in the former case, significant variations in x?(t)
make it difficult for the agent to follow and may lead to
a linear regret. For instance, if the squared path length is
linear in T , e.g., if the goal location d(t) moves away from
the agent by vmax meters per time slot, the adversary may
never be able to catch up with the goal. The cumulative
gradient variation is also similar and has been widely used
in the context of online learning and dynamic optimization
[24], [25].

Let γ̄ := max1≤t≤T−1 γt and γ := min1≤t≤T−1 γt be the
constants that do not depend on T . The following theorem
summarizes the regret bound for the OGD algorithm (2).

Theorem 1: Under the assumptions (A1)-(A4) and for
µ < γ̄ < 2γ−L, the sequence of x̂(t) generated by (2) adheres
to the regret bound

RegT ≤O
√

T (ST +GT ). (6)



The result in Theorem 1 states that for large values of
T and for a sub-linearly time-varying adversary, the online
algorithm incurs a sub-linear regret over the off-line solution.
The proof of Theorem 1 follows along the lines of that in
[2] but includes modifications required to handle the generic
time-varying convex constraint function gt . Proof to Theorem
1 is made available in the supplementary material1.

IV. TRAJECTORY PLANNING IN OCEAN ENVIRONMENTS

The proposed utility-optimal trajectory design algorithm is
applied to a watercraft operating in an ocean environment and
seeking a possibly time-varying goal. While the watercraft
has propulsive capabilities, it is required to reach the goal in
a limited amount of time while expending minimal energy.
The following information is available at any time t:
• Historical data on ocean currents in the region such as

that available from Regional Ocean Modeling System
(ROMS) [9],

• Current watercraft location x̂(t),
• Current ocean velocity vo(t) at location x̂(t), and
• Current goal location d(t),

in addition to problem parameters such as T , maximum
watercraft velocity in still water vmax, and other tunable
parameters.

Designing online trajectories in such time-varying and
uncertain environments is challenging and has never been
attempted before. Existing methods usually rely on forecasts
and require re-solving the full problem at every time slot.
While such an approach can also be adopted here, we are
interested in a more computationally efficient algorithm. The
proposed algorithm will be based on the OGD algorithm in
(2) and therefore adheres to the guarantees in Theorem 1.
However, in order to ensure Assumption (A4) and to obtain
reasonable performance, it is required to design the functions
ft and gt as well as provide rules for choosing the step-size.

A. Design of the objective function ft
We consider the objective function

ft(x(t)) :=λ (t)‖x(t)−d(t)‖2

+(1−λ (t))〈x̂(t−1)−x(t),vo(t)〉 (7)

where λ (t) ∈ [0,1], is a control parameter. The objective
function in (7) is, therefore, a convex combination of the
current squared distance from the target ‖x(t)−d(t)‖2 and
the component of vehicle velocity in the negative direction
of the ocean velocity. Consequently, an appropriate choice of
λ (t) ensures that the planned trajectory is headed towards the
current goal location and in the direction of ocean currents, if
possible. For instance, when λ (t) is close to 1, the watercraft
ignores the ocean currents and heads straight to the goal.
Clearly, the choice of λ (t) is critical towards ensuring the
goal is reached in a timely manner, and at the same time,
energy consumption is minimized. Next, we discuss two
different strategies for the choice of λ (t).

1Proof of Theorem 1 is provided at https://goo.gl/3LLAvp

TABLE I: Behavior of direction-dependent λ (t) choice

Direction of
ocean currents

w.r.t goal

Magnitude of ocean currents
Strong

η(t)≈ 1
Moderate
η(t)≈ 0.5

Lower
η(t)≈ 0

θ(t) ∈ [0, π

2 ) λ (t) ∈ [0,0.5) λ (t) ∈ [0.5,0.75) λ (t)≈ 1
θ(t) ∈ [ π

2 ,π] λ (t) ∈ [0.5,1] λ (t) ∈ [0.75,1) λ (t)≈ 1

1) Increasing λ (t): The choice λ (t) = t/T for 1≤ t ≤ T
is motivated from the observation that the watercraft may
drift along the direction of the ocean currents initially to save
energy. However, as time goes on, more importance must be
placed on reaching the goal. While such a strategy was used
in [2], it is agnostic to the direction and magnitude of vo(t)
and therefore suboptimal (see Fig.1(b)). In particular, this
strategy fails when the ocean currents are pointing directly
away from the goal, ultimately resulting in more energy
expenditure than for the straight line path. Note that with
this choice of λ (t), Assumptions (A1)-(A3) are satisfied.

2) Direction-dependent λ (t): Instead of increasing λ (t),
information about the direction of ocean currents may be
taken into account using the following choice:

λ (t) = 1−η(t)cos2
(

θ(t)
2

)
(8)

where θ(t) = ∠(d(t)− x̂(t),vo), η(t) = ‖vo(t)‖
vmax

o
, and vmax

o
is the maximum ocean currents velocity estimated from
historical data. Here, the ratio ‖vo(t)‖

vmax
o

is the relative strength
of the ocean currents at a given point. When the ocean
currents are weak, i.e., ‖vo(t)‖� vmax

o or when the currents
are directed away from the goal location, i.e., θ ≈ π radians,
λ (t) is close to 1 and consequently the watercraft is headed
towards the target. However, when the ocean currents are in
a favorable direction λ < 1 and therefore the watercraft may
utilize the ocean velocity in order to save energy. Table I
provides some example values of λ (t) for various values of
η(t) and θ(t).

B. Design of the constraint function gt

Recalling that the average velocity of the watercraft at
time slot t is x(t+1)−x(t) and measured in meters per slot,
we consider the constraint function of the form

gt(x(t +1),x(t)) :=‖x(t +1)−x(t)−vo(t)‖−α(t)vmax
(9)

where x(t + 1)− x(t)− vo(t) represents the velocity of the
watercraft relative to the ocean. Note that the magnitude of
the relative velocity of the watercraft is physically limited to
at most vmax meters per slot. The additional factor of α(t) ∈
(0,1] is included to further restrict the maximum relative
velocity if required. When the objective function with λ (t)
as in (8) is used, it only provides directional information and
α(t) must be carefully chosen to ensure that Assumption
(A4) is satisfied. Towards this end, we consider

α(t) = exp
(
−β

(
δ

TETA
+η(t)cos

(
θ(t)

2

)))
(10)

where δ , η(t), and θ(t) are as defined earlier. Intuitively,
α(t) is small when the ocean currents are in a favorable
direction (θ � π/2) and are either strong (large η(t)) or
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Fig. 1: (a) Southern California Bight: Note that the ocean currents magnitudes at islands are made negligible (b) Demonstrating the behavior of Increasing vs. Direction-dependent
strategies for λ (t).

sufficient excess time is available (large δ ) to reach the
goal. In such a scenario, the watercraft simply drift along
the currents and can conserve energy. On the other hand,
the watercraft runs the engine at full capacity when α(t) is
close to one, such as when the ocean currents are in the
opposite direction. The tuning parameter β is dependent on
the environment and must be learned a priori using historical
data.

Finally, the OGD updates are applied using the objective
function in (7) while the step-size γt is chosen to satisfy
Assumption (A4) where gt is chosen as per (9). We refer to
our algorithm as online trajectory optimization using online
gradient descent (OTOGD).

V. EXPERIMENTAL EVALUATIONS

We tested our algorithm in a real oceanic environment
built from historical ROMS ocean currents data taken from
[9]. Specifically, we have chosen Southern California Bight
output collected on August 10, 2018, as shown in Fig. 1(a).
From the dataset, it is found that the ocean currents’ velocity
is found to be varying from 0.001 m/s to a maximum of
0.69 m/s. Thereby we assume that the maximum velocity
of the watercraft in still water is 1m/s to make sure that it
can travel forward even in strong disturbances. The energy
incurred for travelling in planned trajectories is calculated in
the same manner as detailed in [7] and is given by

E = cdV 3
r t (11)

where cd is the vehicles’ drag coefficient, Vr is the magnitude
of the required velocity for the motors to provide and t is
the travel time for the relevant section of the path.

A. Static goal

We first illustrate the working of the algorithm when
the goal is static and compare the different strategies for
choosing λ (t). A chunk of the real data labelled ‘A’ (see
Fig. 1(a)) is considered where the ocean currents with high
magnitude are directed away from the goal. The start and

Fig. 2: Trajectory comparisons of STMOP [12], EESTO [4] and OGD with energy
efficient control strategy. Note that straight line trajectory with broken lines is shown
for reference.l

goal locations are as specified in Fig. 1(b). It can be observed
that the OTOGD algorithm with increasing λ (t) makes the
vehicle go away from the goal initially when λ (t) is small,
and as time goes on, λ (t) increases and more emphasis is
placed on reaching the goal. Therefore the vehicle steadily
starts going in the direction of the goal. Such a trajectory
is clearly suboptimal since it requires the vehicle to travel a
longer distance against the current. In contrast, the direction-
dependent choice of λ (t) makes the vehicle travel directly to
the goal and incurs less energy, as also evident from Table
II.

TABLE II: Energy cost comparisons

λ (t) Energy cost (kJ)

Increasing 184.42

Direction-dependent 130.29

To illustrate the performance of the proposed algorithm in
comparison to the state-of-the-art algorithms under a static
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Fig. 4: Illustration of planning in moving goal scenario

goal scenario, we now choose another chunk of real data
‘B’ as shown in Fig. 1(a). The start and goal locations
are as specified in Fig. 2 and are separated by around 147
km. Trajectories are generated using STOMP [12], EESTO
[4] and the proposed OTOGD with the direction-dependent
control strategy. Fig. 2 displays those trajectories along
with the ocean current disturbances. Since STOMP [12] and
EESTO [4] are sampling based methods they do not output
the same trajectory at every run. Instead, we executed the
algorithms 100 times each and picked the trajectory with
the minimum energy cost. The total energy consumed for
all three trajectories is also shown in Fig. Fig. 3. It is
evident from Fig. 3 that the proposed algorithm is generating
trajectories that are more energy efficient than the state-
of-the-art methods besides being online. More importantly,
unlike STOMP [12] and EESTO [4], the obtained trajectory
is the same for each run, and the resulting output has zero
variance.

B. Dynamic goal

To illustrate the performance of the proposed algorithm
under dynamic goal scenario, we make use of the same
chunk ‘B’ of the real data keeping the start location the
same as earlier. Here we simulated a moving goal scenario
and assumed that the exact location of the goal at every
time instant is known to the vehicle. Note that the proposed
framework still requires the maximum velocity of the goal to

TABLE III: Energy conservation vs. delay analysis

% of
excess time slots

Energy conserved (kJ)
EESTO STOMP OTOGD

10% 112.01 ± 24.4 107.10 ± 28.2 123.08
30% 184 ±26.6 170.2 ± 31.1 217.13

be significantly less than that of the vehicle. Fig. 4 displays
the final trajectory along with the trajectory traversed by the
goal. Observe the change in the shape of the trajectory as
compared to that of the static goal scenario in Fig. 2.

It is remarked that in theory, existing algorithms such as
[4] can perform re-planning at every time instant thereby
following a moving goal. However, with per-waypoint re-
planning, EESTO incurs a computational cost of O(IKN4)
where K is the number of samples, N represents the total
number of waypoints, and I is the total number of iterations
required for convergence. In contrast, the proposed algorithm
only incurs a cost of O(N) even when the goal and the
environment are time-varying.

C. Delay vs energy conservation analysis

Here we ran STOMP [12], EESTO [4] along with the
proposed OTOGD algorithm for 10% and 30% allowed delay
in time for 30 randomly chosen chunks of real data displayed
in Fig 1(a). For each of the case, Table III shows the average
amount of energy conserved as compared to the energy
incurred in travelling along the straight line path from the
starting point to the goal. As evident from the table, the
proposed algorithm saves more energy as compared to state-
of-the-art algorithms. Further, existing algorithms exhibit a
high variance in the conserved energy, requiring multiple
runs.

VI. CONCLUSIONS

This paper considered the problem of designing an online
framework for energy-efficient trajectory planning under
strong and time-varying disturbances in oceanic environ-
ments. The problem is formulated as a time-varying con-
strained convex optimization problem and solved using on-
line gradient descent updates adhering to motion constraints.
Leveraging the online framework, the proposed algorithm is
capable of handling temporal variations in both the ocean
currents as well as the goal locations and incurs sub-linear
offline regret. Numerical tests carried out using historical
regional ocean modelling system dataset, establish that the
proposed algorithm yields energy efficient trajectories as
compared to the state-of-the-art algorithms. Besides, the
proposed algorithm is computationally efficient by several
orders of magnitude. Future work includes incorporating
static or dynamic obstacle avoidance techniques and handling
uncertainties in the vehicle or goal locations.
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